- Discuss the general characteristics of Group 15 elements with reference to 7.1 their electronic configuration, oxidation state, atomic size, ionisation enthalpy and electronegativity.
- Why does the reactivity of nitrogen differ from phosphorus? 7.2
- Discuss the trends in chemical reactivity of group 15 elements. 7.3
- Why does NH₃ form hydrogen bond but PH₃ does not? 7.4
- How is nitrogen prepared in the laboratory? Write the chemical equations 7.5 of the reactions involved.
- How is ammonia manufactured industrially? 7.6
- Illustrate how copper metal can give different products on reaction with HNO₃. 7.7
- Give the resonating structures of NO2 and N2O5. 7.8
- The HNH angle value is higher than HPH, HAsH and HSbH angles. Why? [Hint: Can be explained on the basis of sp³ hybridisation in NH₃ and only 7.9 s-p bonding between hydrogen and other elements of the group].
- Why does $R_3P = O$ exist but $R_3N = O$ does not (R = alkyl group)? 7.10
- Explain why NH₃ is basic while BiH₃ is only feebly basic. 7.11
- Nitrogen exists as diatomic molecule and phosphorus as P₄. Why?
- Write main differences between the properties of white phosphorus and red 7.12 7.13
- Why does nitrogen show catenation properties less than phosphorus? 7.14
- Give the disproportionation reaction of H_3PO_3 .
- Can PCl₅ act as an oxidising as well as a reducing agent? Justify. 7.15
- Justify the placement of O, S, Se, Te and Po in the same group of the 7.16 periodic table in terms of electronic configuration, oxidation state and hydride 7.17 formation.
- Why is dioxygen a gas but sulphur a solid?
- Knowing the electron gain enthalpy values for $O \rightarrow O^-$ and $O \rightarrow O^{2-}$ as -141 and 702 kJ mol⁻¹ respectively, how can you account for the formation of a 7.18 7.19 large number of oxides having O² species and not O²? (Hint: Consider lattice energy factor in the formation of compounds).
- Which aerosols deplete ozone?
- Describe the manufacture of H₂SO₄ by contact process? 7.20 7.21
- How is SO₂ an air pollutant?
- Why are halogens strong oxidising agents? 7.22
- Explain why fluorine forms only one oxoacid, HOF. Explain why inspite of nearly the same electronegativity, nitrogen forms 7.23 7.24
- hydrogen bonding while chlorine does not. 7.25
- Write two uses of ClO₂. 7.26
- Why are halogens coloured?
- Write the reactions of F_2 and Cl_2 with water. 7.27 7.28
- How can you prepare Cl_2 from HCl and HCl from Cl_2 ? Write reactions only. What inspired N. Bartlett for carrying out reaction between Xe and PtF_6 ? 7.29
- 7.30
- What are the oxidation states of phosphorus in the following: 7.31 (ii) PCl₃ (i) H_3PO_3

7.32 Write balanced equations for the following: Write balanced equations to a solution of Nal in water (i) NaCl is heated with sulphuric a solution of Nal in water (II) Chlorine gas is passed into a solution of Nal in water. How are xenon fluorides XeF2, XeF4 and XeF6 obtained? How are xenon fluorides Aer 2. CIO isoelectronic? Is that molecule a Lewis 7.33 7.34 Now are Access and the order of property indicated for each sea (i) F_2 , Cl_2 , Br_2 , l_2 - increasing bond dissociation enthalpy, 7.35 (ii) HF, HCl, HBr, HI - increasing acid strength. 7.36 (III) NH_a, PH_a, AsH_a, SbH_a, BiH_a - increasing base strength. Which one of the following does not exist? (III) XeF₂ (1V) XeV. Give the formula and describe the structure of a noble gas species which 7.37 7.38 is isostructural with: (III) BrO₂ (II) IBr₂° Why do noble gases have comparatively large atomic sizes? List the uses of neon and argon gases.