Determine the order and degree, if defined, of the following differential equations. State also, if these are linear or non-linear:

1. (i)
$$x^3 \left(\frac{d^2 y}{dx^2} \right)^2 + x \left(\frac{dy}{dx} \right)^4 = 0$$

$$(ii) \left(\frac{dy}{dx}\right)^4 + 3x \frac{d^2y}{dx^2} = 0$$

$$(iii) \left(\frac{dy}{dx}\right)^4 + 3y \frac{d^2y}{dx^2} = 0$$

$$(iv)\left(\frac{d^2y}{dx^2}\right)^3 + y\left(\frac{dy}{dx}\right)^4 + x^3 = 0$$

$$(v)\left(\frac{d^2s}{dt^2}\right)^2 + \left(\frac{ds}{dt}\right)^3 + 4 = 0$$

$$(vi) y \left(\frac{d^4 y}{dx^4}\right)^4 = 7$$

2. (i)
$$5x \left(\frac{dy}{dx}\right)^2 + \frac{d^2y}{dx^2} - 6y = \log x$$

(ii)
$$y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = x \left(\frac{d^3y}{dx^3}\right)^2$$

$$(iii) \left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^3 + 2y = 0$$

$$(iv) y''^2 - 2y'' - y' + 1 = 0$$

(v)
$$t^2 \frac{d^2s}{dt^2} - st \frac{ds}{dt} = \frac{d^4s}{dt^4}$$

(vi)
$$y = x \frac{dy}{dx} + a \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

3. (i)
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2} = 5 \frac{d^2y}{dx^2}$$

(ii)
$$\sqrt{1-x^2} dx + \sqrt{1-y^2} dy = 0$$

$$(iii) \left(\frac{ds}{dt}\right)^4 + 3s \frac{d^2s}{dt^2} = 0$$

(iv)
$$y = px + \sqrt{a^2p^2 + b^2}$$
, where $p = \frac{dy}{dx}$

$$(v) x \frac{dy}{dx} + \frac{3}{\frac{dy}{dx}} = y^2$$

$$(vi) \sin\left(\frac{d^2y}{dx^2}\right) + \frac{dy}{dx} = 9$$

4. (i)
$$\frac{d^4y}{dx^4} + \sin(y''') = 0$$

$$(ii)\left(\frac{d^2y}{dx^2}\right)^2 + \cos\left(\frac{dy}{dx}\right) = 0$$

VERY SHORT ANSWER TYPE QUESTIONS

- 1. Show that $x^2 + 4y = 0$ is a solution of $\left(\frac{dy}{dx}\right)^2 + x \frac{dy}{dx} y = 0$.
- 2. Show that $y = \sqrt{1 + x^2}$ is a solution of $y' = \frac{xy}{1 + x^2}$.
- 3. Show that $y = \frac{1}{2x} + Ax + B$ is a solution of $x^3 \frac{d^2y}{dx^2} = 1$.
- 4. Show that $y = a \cos x + b \sin x$ is a solution of y'' + y = 0.
- 5. Show that $y = 3\cos(\log x) + 4\sin(\log x)$ is a solution of $x^2 \frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$.
- **6.** Show that $y = ae^{2x} + be^{-x}$ is a solution of $y_2 y_1 2y = 0$.
- 7. Show that $y = e^{3x} (A + Bx)$ is a solution of $y_2 6y_1 + 9y = 0$.
- 8. Show that $y = c_1 e^{ax} \cos bx + c_2 e^{ax} \sin bx$ is a solution of $y_2 2ay_1 + (a^2 + b^2)y = 0$.
- 9. Show that $y = \cos(\cos x)$ is a solution of $\frac{d^2y}{dx^2} \cot x \frac{dy}{dx} + y \sin^2 x = 0$.
- 10. Show that $x + y = \tan^{-1} y$ is a solution of $y^2y' + y^2 + 1 = 0$.
- 11. Show that $y = x \sin x$ is a solution of $xy' = y + x\sqrt{x^2 y^2}$ ($x \ne 0$ and x > y or x < -y).
- 12. Show that $y \cos y = x$ is a solution of $(y \sin y + \cos y + x)y' = y$.
- 13. Show that $x^2 = 2y^2 \log y$ is a solution of $(x^2 + y^2) \frac{dy}{dx} xy = 0$.
- 14. Show that $y = c_1 e^x + c_2 e^{-x}$ is the general solution of $\frac{d^2y}{dx^2} y = 0$.
- 15. Show that $y = e^x + 1$ is a solution of y'' y' = 0.
- 16. Show that $y = x^2 + 2x + C$ is a solution of y' 2x 2 = 0.
- 17. Show that $y = \cos x + C$ is a solution of $y' + \sin x = 0$.
- 18. Show that y = Ax is a solution of xy' = y, $x \neq 0$.
- 19. Show that $y = ae^x + be^{-x} + x^2$ is a solution of $\frac{d^2y}{dx^2} y + x^2 2 = 0$.

LONG ANSWER-I TYPE QUESTIONS

Solve the following differential equations (Q. No. 1-25):

1.
$$(3xy + y^2)dx + (x^2 + xy)dy = 0$$

3.
$$(x^2 + xy)dy = (x^2 + y^2)dx$$

$$5. x \frac{dy}{dx} + \frac{y^2}{x} = y$$

$$7. \quad x^2 \frac{dy}{dx} = y(x+y)$$

$$9. x^2 \frac{dy}{dx} = \frac{y(x+y)}{2}$$

11.
$$\frac{dy}{dx} = \frac{y}{x} + \tan \frac{y}{x}$$

13.
$$x^2y_1 = x^2 - 2y^2 + xy$$

15.
$$x^2 dy + y(x+y)dx = 0$$

17.
$$xy \left(\log \frac{y}{x} \right) dx + \left(y^2 - x^2 \log \frac{y}{x} \right) dy = 0$$

18.
$$\frac{y}{x}\cos\frac{y}{x}dx - \left(\frac{x}{y}\sin\frac{y}{x} + \cos\frac{y}{x}\right)dy = 0$$

19.
$$(y^2 - 2xy)dx = (x^2 - 2xy)dy$$

21.
$$2xy dx + (x^2 + 2y^2) dy = 0$$

23.
$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$$

$$25. x\frac{dy}{dx} - y + x \sin \frac{y}{x} = 0.$$

2.
$$2xyy' = x^2 + 3y^2$$

4.
$$(x^2 - y^2)dx + 2xy dy = 0$$

6.
$$x^2y dx - (x^3 + y^3)dy = 0$$

8.
$$y - x \frac{dy}{dx} = x + y \frac{dy}{dx}$$

$$10. x \frac{dy}{dx} = y(\log y - \log x + 1)$$

12.
$$(x-y) \frac{dy}{dx} = x + 2y$$

14.
$$(x^2 - y^2)dx + xy dy = 0$$

$$16. y dx + x \left(\log \frac{y}{x}\right) dy - 2x dy = 0$$

20.
$$y^2 dx + (x^2 - xy + y^2)dy = 0$$

22.
$$(y^2 - x^2)dy = 3xy \ dx$$

24.
$$(x - y)dy - (x + y)dx = 0$$