TYPE A: VERY SHORT ANSWER QUESTIONS (1 mark each)

- 1. Are rest and motion absolute or relative terms?
- 2. Can an object be at rest as well as in motion at the same time?
- 3. Is it true that a body is at rest in a frame within which it has been fixed?
- 4. Under what condition can an object in motion be considered a point object?
- 5. Give an example of a physical phenomenon in which earth cannot be regarded as a point mass.
- 6. Under what condition will the distance and displacement of moving object have the same magnitude? [Chandigarh 08]
- 7. A bullet fired vertically upwards falls at the same place after some time. What is the displacement of the bullet?
- 8. A particle is moving along a circular track of radius *r*. What is the distance traversed by particle in half revolution? What is its displacement?
- 9. Will the displacement of an object change on shifting the position of origin of the coordinate system? [Himachal 06C]
- 10. What does the speedometer of a car measure-average speed or instantaneous speed?
- 11. What is the numerical ratio of velocity to speed of an object?
- 12. A ball hits a wall with a velocity of 30 ms⁻¹ and rebounces with the same velocity. What is the change in its velocity?
- 13. Why does time occur twice in the unit of acceleration?
- 14. Give an example which shows that a positive acceleration can be associated with a slowing down object.
- Give an example which shows that a negative acceleration can be associated with a speeding up object.
- 16. Is the acceleration of a car greater than when the accelerator is pushed to the floor or when brake pedal is pushed hard?
- 17. The *v-t* graphs of two objects make angles of 30° and 60° with the time-axis. Find the ratio of their accelerations.
- 18. Is it possible that your cycle has a northward velocity but southward acceleration? If yes, how?

- 19. If the instantaneous velocity of a particle is zero, will its instantaneous acceleration be necessarily zero?
- 20. A woman standing on the edge of a cliff throws a ball straight up with a speed of 8 kmh⁻¹ and then throws another ball straight down with a speed of 8 kmh⁻¹ from the same position. What is the ratio of the speeds with which the balls hit the ground?
- 21. A body travels, with uniform acceleration a_1 for time t_1 and with uniform acceleration a_2 for time t_2 . What is the average acceleration?
- 22. What is the nature of position-time graph for a uniform motion? [Chandigarh 03]
- 23. What does the slope of position-time graph indicate? [Himachal 07]
- 24. What is the nature of velocity-time graph for uniform motion?
- 25. If the displacement-time graph for a particle is parallel to displacement axis, what should be the velocity of the particle?
- 26. If the displacement-time graph for a particle is parallel to time-axis, how much is the velocity of the particle?
- 27. How can the distance travelled be calculated from the velocity-time graph in a uniform one-dimensional motion?
- 28. Suppose the acceleration of a body varies with time. Then what does the area under its acceleration-time graph for any time interval represent?
- 29. What is the area under the velocity-time curve in the case of a body projected vertically upwards from the ground after reaching the ground?
- 30. Can a particle with zero acceleration speed up?
- 31. Is the formula : $s = vt \frac{1}{2}at^2$ correct, when the body is moving with uniform acceleration?
- 32. A body projected up reaches a point *P* of its path at the end of 4 seconds and the highest point at the end of 12 seconds. After how many seconds from the start will it reach *P* again?
- 33. Can a body subjected to a uniform acceleration always move in a straight line?

- 1. A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further will it penetrate before coming to rest assuming that it faces constant resistance in motion?
 - (a) 1.5 cm
- (b) 1.0 cm
- (c) 3.0 cm
- (d) 2.0 cm

[AIEEE 05]

- 2. A car moving with the speed of 50 kmh⁻¹ can be stopped by brakes after atleast 6 m. If the same car is moving at a speed of 100 kmh⁻¹, the minimum stopping distance is
 - (a) 12 m
- (b) 18 m
- (c) 24 m
- (d) 6 m

[AIEEE 03]

- 3. An automobile travelling with a speed of 60 kmh⁻¹ can brake to stop within a distance of 20 m. If the car is going twice as fast i.e., 120 kmh⁻¹, the stopping distance will be
 - (a) 20 m
- (b) 40 m
- (c) 60 m
- (d) 80 m

[AIEEE 04]

- 4. Speeds of two identical cars are u and 4u at a specific instant. The ratio of the respective distances at which the two cars are stopped from that instant is
 - (a) 1:1
- (b) 1:4
- (c) 1:8
- (d) 1: 16

[AIEEE 02]

- 5. If a body loses half of its velocity on penetrating 3 cm in a wooden block, then how much will it penetrate more before coming to rest?
 - (a) 1 cm
- (b) 2 cm
- (c) 3 cm
- (d) 4 cm

[AIEEE 02]

6. A car, starting from rest, accelerates at the rate fthrough a distance s, then continues at constant speed for time t and then decelerates at the rate f/2 to come to rest. If the total distance traversed is 5s, then

(a)
$$s = ft$$

(b)
$$s = \frac{1}{6} ft^2$$

(c)
$$s = \frac{1}{2} ft^2$$

$$(d) s = \frac{1}{4} ft^2$$

[AIEEE 05]

- 7. The relation between time t and distance x is $t = ax^2 + bx$, where a and b are constants. acceleration is
 - $(a) -2 abv^2$
- (b) $-2 bv^3$ (d) $-2 av^2$
- (c) $-2av^3$

IAIEEE 051

- 8. A particle located at x = 0 at time t = 0, starts moving along the positive x-direction with a velocity vthat varies as $v = \alpha \sqrt{x}$. The displacement of the particle varies with time as
 - (a) $t^{1/2}$
- (c) t^2
- (d) t

[AIEEE 06]

- 9. The velocity of a particle is $v = v_0 + gt + ft^2$. If its position is x = 0 at t = 0, then its displacement after time (t=1) is
 - (a) $v_0 + \frac{g}{2} + f$
- (b) $v_0 + 2g + 3f$
- (c) $v_0 + \frac{g}{2} + \frac{f}{2}$
- $(d) v_0 + g + f$

10. A body is at rest at x = 0. At t = 0, it starts moving in the positive x-direction with a constant acceleration. At the same instant another body passes through x = 0moving in the positive x-direction with a constant speed. The position of the first body is given by $x_1(t)$ after time t and that of second body by $x_2(t)$ after the same time interval. Which of the following graphs correctly describes $(x_1 - x_2)$ as a function of time t?

- 11. From a building two balls A and B are thrown such that A is thrown upwards and B downwards (both vertically). If v_A and v_B are their respective velocities on reaching the ground, then
 - (a) $v_B > v_A$
- $(b) v_A = v_B$
- $(c) v_A > v_B$
- (d) their velocities depend on their masses.

[AIEEE 02]

5. With the usual notations, the following equations $s_{th} = u + \frac{1}{2}a(2t-1)$ is

- (a) only numerically correct
- (b) only dimensionally correct
- (c) both numerically and dimensionally correct
- (d) neither numerically nor dimensionally correct [IPUEE 10]
- 6. What is the relation among displacement, time and acceleration in case of a body having uniform acceleration f?

(a)
$$s = ut + \frac{1}{2} ft^2$$
 (b) $s = (u + f)t$

(c)
$$s = v^2 - 2 fs$$
 (d) none of these [DCE 99]

- 7. The motion of a particle is described by the equation u = at. The distance travelled by particle in first 4 s is
 - (b) 12a(a) 4a
 - (d) 8a [DCE 2K] (c) 6a
- 8. The displacement x of a particle varies with e t as $x = ae^{-\alpha t} + be^{\beta t}$ time t as where a, b, α and β are positive constants. The velocity of the particle will
 - (a) go on decreasing with time
 - (b) be independent of α and β
 - (c) drop to zero when $\alpha = \beta$
 - (d) go on increasing with time [DCE 01]
- 9. A ball rolls up a slope. At the end of three seconds its velocity is 20 cm/s, at the end of eight seconds its velocity is 0. What is the acceleration from the third to eighth second?
 - $(b) 4.0 \text{ cm/s}^2$ $(a) - 2.5 \text{ cm/s}^2$
 - $(d) 6.0 \text{ cm/s}^2$ $(c) - 5.0 \text{ cm/s}^2$ [IPUEE 15]
- 10. The acceleration 'a' of a particle starting from rest varies with time according to relation $a = \alpha t + \beta$. The velocity of the particle after a time 't' will be

12. A particle moving in one dimension with a constant acceleration of 2 m/s² is observed to cover a distance of 5 m during a particular interval of 1 s. The distance covered by the particle in the next 1 s interval (in metre) is (b) 6 (a) 5

[DCE 09]

(d) 10(c)7[IPUEE 12]

13. A train started from rest from a station and accelerated at 2 ms⁻² for 10 s. Then, it ran at constant speed for 30 s and thereafter it decelerated at 4 ms⁻² until it stopped at the next station. The distance between two stations is

- (b) 700 m (a) 650 m
- (c) 750 m (d) 800 m
- 14. A ball falls from 20 m height on floor and rebounds to 5 m. Time of contact is 0.02 sec. Find acceleration during impact.
 - $(b) 1000 \,\mathrm{m}/\mathrm{s}^2$ (a) $1200 \,\mathrm{m}/\mathrm{s}^2$
 - $(c) 2000 \,\mathrm{m} \,/\,\mathrm{s}^2$ $(d) 1500 \,\mathrm{m/s^2}$
- 15. A ball is dropped from top of a tower of 100 m height. Simultaneously another ball was thrown upward from bottom of the tower with a speed of $50 \,\mathrm{m}/\mathrm{s}$. They will cross each other $(g = 10 \,\mathrm{m}/\mathrm{s}^2)$ after
 - (a) 1 sec (b) 2 sec
 - [IPUEE 04] (c) 3 sec (d) 4 sec
- 16. A body dropped from a height h with an initial speed zero reaches the ground with a velocity of 3 km/h. Another body of the same mass dropped from the same height h with an initial speed 4 km/h will reach the ground with a velocity of
 - (a) 3 km/h (b) 4 km/h
 - [IPUEE 10] (c) 5 km/h (d) 12 km/h
- 17. A ball thrown upward from the top of a tower with speed v reaches the ground in t_1 second. If this ball is thrown downward from the top of the same tower with speed v_i it reaches the ground in t_2 seconds.

1. A car covers the first half of the distance between	912211111
two places at 40 km/h and another half at 60 km/h. The	
average speed of the car is	

- (a) 40 km/h
- (b) 48 km/h
- (c) 50 km/h
- (d) 60 km/h

[CBSE PMT 90]

2. A car moves a distance of 200 m. It covers the first half of the distance at speed 40 km/h and the second half of distance at speed v. The average speed is 48 km/h. The value of v is

- (a) 56 km/h
- (b) 60 km/h
- (c) 50 km/h
- (d) 48 km/h

ICBSE PMT 911

3. A bus travelling the first one-third distance at a speed of 10 km/h, the next one-third at 20 km/h and the last one-third at 60 km/h.

The average speed of bus is

- (a) 9 km/h
- (b) 16 km/h
- (c) 18 km/h
- (d) 48 km/h

ICBSE PMT 911

4. A car moves from X to Y with a uniform speed v_u and returns to Y with a uniform speed v_d . The average speed of this round trip is

(a)
$$\sqrt{v_u v_d}$$

$$(b) \frac{v_d v_u}{v_d + v_u}$$

$$(c) \frac{v_u + v_d}{2}$$

$$(d) \frac{2v_d v_u}{v_d + v_u}$$

[CBSE PMT 07]

5. A particle covers half of its total distance with speed v_1 and the rest half distance with speed v_2 . Its average speed during the complete journey is

(a)
$$\frac{v_1^2 v_2^2}{v_1^2 + v_2^2}$$

$$(b) \frac{v_1 + v_2}{2}$$

$$(c) \frac{v_1 v_2}{v_1 + v_2}$$

$$(d) \frac{2v_1v_2}{v_1 + v_2}$$

[CBSE Final 2011]

 A car moves along a straight line, whose equation of motion is given by

$$s = 12t + 3t^2 - 2t^3$$

where s is in metres and t in seconds. The velocity of the car at the start will be

- (a) $7 \,\mathrm{ms}^{-1}$
- $(b) 9 \,\mathrm{ms}^{-1}$
- (c) 12 ms^{-1}
- (d) $16 \,\mathrm{ms}^{-1}$

[CBSE PMT 98]

7. A particle moves along a straight line OX. At a time t (in seconds) the distance x (in metres) of the

particle from O is given by $x = 40 + 12t - t^3$. How long would the particle travel before coming to rest?

- (a) 16 m
- (b) 24 m
- (c) 40 m
- (d) 56 m

[CBSE PMT 06]

8. The position x of a particle varies with time t as $x = at^2 - bt^3$. The acceleration will be zero at time t equal to

- $(a) \frac{a}{3b}$
- (b) zero
- $(c)\frac{2a}{3b}$
- $(d)\frac{a}{b}$

[CBSE PMT 97]

9. Motion of a particle is given by equation $s = (3t^3 + 7t^2 + 14t + 8)$ m. The value of acceleration of the particle at t = 1 sec is

- (a) 10 m/s^2
- (b) 32 m/ s^2
- (c) 23 m/s^2
- (d) 16 m/s^2

ICBSE PMT 2K1

10. A particle moves along a straight line such that its displacement at any time t is given by $s = (t^3 - 6t^2 + 3t + 4)$ metres. The velocity when the acceleration is zero, is

- (a) 3 m/s
- (b) 42 m/s
- (c) -9 m/s
- (d) -15 m/s

ICBSF PMT 941

11. The motion of a particle along a straight line is described by equation : $x = 8 + 12t - t^3$, where x is in metre and t in second. The retardation of the particle when its velocity becomes zero, is

- (a) $24 \,\mathrm{ms}^{-2}$
- (b) zero
- $(c) 6 \,\mathrm{ms}^{-2}$
- (d) 12 ms^{-2}

[AIPMT Pre 12]

12. A particle moves a distance x in time t according to equation : $x = (t+5)^{-1}$. The acceleration of particle is proportional to

- (a) $(velocity)^{3/2}$
- (b) (distance)²
- (c) $(distance)^{-2}$
- (d) $(velocity)^{2/3}$

[CBSE Pre 2010]

13. A particle of unit mass undergoes onedimensional motion such that its velocity varies according to

$$v(x) = \beta x^{-2n}$$

where β and n are constants and x is the position of the particle. The acceleration of the particle as a function of x, is given by

- $(a) -2n\beta^2 x^{-4n-1}$
- (b) $-2\beta^2 x^{-2n+1}$
- (c) $-2n\beta^2x^{-4n+1}$
- $(d) -2n\beta^2 x^{-2n}$

[AIPMT 15

- (a) the velocity is zero and therefore there is no acceleration acting on the particle
- (b) the acceleration is present and therefore velocity is not zero
- (c) the acceleration depends on the velocity as
- (d) the acceleration is independent of the velocity
- 21. A ball is dropped from a high rise platform at t = 0 starting from rest. After 6 s another ball is thrown downwards from the same platform with a speed v. The two balls meet at $t = 18 \, \text{s}$. What is the value of v? $(Take g = 10 ms^{-2})$
 - (a) 74 ms^{-1}
- (b) 64 ms^{-1}
- (b) 84 ms^{-1}
- $(d) 94 \text{ ms}^{-1}$
- [VMMC 12]
- 22. A body A is thrown up vertically from the ground with a velocity v_0 and another body B is simultaneously dropped from a height H. They meet at a height H/2, if v_0 is equal to
- (a) $\sqrt{2gH}$ (b) \sqrt{gH} (c) $\frac{1}{2}\sqrt{gH}$ (d) $\sqrt{\frac{2g}{H}}$
- Velocity-time curve for a body projected vertically upwards is
 - (a) ellipse
- (b) hyperbola
- (c) parabola
- (d) straight line
- IDPMT 95]
- 24. Which of the following distance-time graph [DPMT 2K] shows accelerated motion?

25. Which of the following graph represents uniformly accelerated motion?

26. Acceleration-time graph of a body is shown.

The corresponding velocity-time graph of the same body is

27. What will be ratio of speed in first two seconds to the speed in next 4 seconds?

- (c) 2:1
- [VMMC 02 ; AIIMS 14]