NCERT CHAPTER : RELATIONS AND FUNCTIONS

NCERT EXERCISE

- 1. Determine whether each of the following relations are reflexive, symmetric and transitive:
 - (i) Relation R in the set A = $\{1, 2, 3, ..., 13, 14\}$ defined as R = $\{(x, y) : 3 \times x y = 0\}$
 - (ii) Relation R in the set N of natural numbers defined as $R = \{(x, y) : y = x + 5 \text{ and } x < 4\}$
 - (iii) Relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ as
- $R = \{(x, y) : y \text{ is divisible by } x\}$
- (iv) Relation R in the set Z of all integers defined as
- $R = \{(x, y) : x y \text{ is an integer}\}\$
- (v) Relation R in the set A of human beings in a town at a particular time given by.
- (a) $R = \{(x, y) : x \text{ and } y \text{ work at the same place}\}$
- (b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality}\}$
- (c) $R = \{(x, y) : x \text{ is exactly 7 cm taller than } y\}$
- (d) $R = \{(x, y) : x \text{ is wife of } y\}$
- (e) $R = \{(x, y) : x \text{ is father of } y\}.$
- 2. Show that the relation R in the set R of real numbers, defined as
 - $\mathbf{R} = \{(a, b) : a \le b^2\}$, is neither reflexive nor symmetric nor transitive.
- 3. Check whether the relation R defined in the set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b) : b = a + 1\}$ is reflexive,
- 4. Show that the relation R in R defined as $R = \{(a, b) : a \le b\}$, is reflexive and transitive but not symmetric.
- 5. Check whether the relation R in **R** defined by $R = \{(a, b) : a \le b^3\}$ is reflexive, symmetric or transitive.
- 6. Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ is symmetric but neither reflexive
- 7 Show that the relation R in the set A of all the books in a library of a college, given by $R = \{(x, y) : x \text{ and } y \text{ have same number of pages}\}$, is an equivalence relation.
- 8. Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$, given by
 - $R = \{(a, b) : | a b | \text{ is even} \}$, is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related $R = \{(a, b) : |a - b| | B \in \mathbb{N}, L$ to each other and all the elements of $\{1, 3, 5\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any
- 9. Show that the relations R in the set $A = \{x \in \mathbb{Z} : 0 \le x \le 12\}$, given by
 - (i) $R = \{(a, b) : | a b | \text{ is a multiple of 4}\},$
- (ii) $R = \{(a, b) : a = b\},\$
- are equivalence relations. Find the set of all elements related to 1 in each case.
- 10. Give examples of relations which are
 - (i) Symmetric but neither reflexive nor transitive.
 - (ii) Transitive but neither reflexive nor symmetric.
 - (iii) Reflexive and symmetric but not transitive.
 - (iv) Reflexive and transitive but not symmetric.
 - (v) Symmetric and transitive but not reflexive.